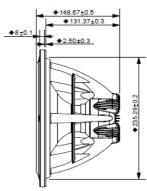

Model Number: NE265W-04 Revision: rev 3 0 Description: Vifa NE Woofer 10" Date: 1-Sep-09



The Vifa NE product line has leading-edge transducer technology packaged in a cutting edge, stylistic design. The subwoofers in this product line feature an innovative cast aluminium basket design which minimizes acoustic reflections inside the driver, through large basket windows and sculpted basket spokes. The basket also is designed to act as a highly coupled heat sink to the Neodymium-Iron-Boron magnet (NdFeB) motor, so as to improve power handling capacity. An additional heat sink is available to provide extra thermal protection if needed. The cone and dust cap are constructed of natural wood fiber material with proprietary coating formulas & processes, so as to yield high clarity products. The cone designs also utilize pentacone technology for improved frequency response. The voice coil bobbin is titanium, for improved performance. The FEA-designed motor features copper caps to minimize inductance and extend performance to high frequencies. Rounding out the design is a 4-way terminal block connector, for ease of electrical connection.

Mechanical 2D Drawing:

Specifications:

DC Resistance	R _{evc}	Ω	2.9	Energy Bandwidth Product	EBP	(1/Q _{es})·f _s	77
Minimum Impedance	Z_{min}	Ω	3.7	Moving Mass	M_{ms}	g	98.21
Voice Coil Inductance	L _e	mH	0.40	Suspension Compliance	C_{ms}	um/N	476.0
Resonant Frequency	fs	Hz	23	Effective Cone Diameter	D	cm	20.5
Mechanical Q Factor	Q _{ms}	-	13.8	Effective Piston Area	S_D	cm ²	330.1
Electrical Q Factor	Q _{es}	-	0.30	Equivalent Volume	V _{as}	L	72.83
Total Q Factor	Q_{ts}	-	0.29	Motor Force Factor	BL	T·m	11.74
Ratio f _s / Q _{ts}	F	f_s / Q_{ts}	79	Motor Efficiency Factor	β	$(T \cdot m^2)/\Omega$	48.18
Half Space Sensitivity @ 2.83V	dB@2.83V/1m	dB	88.0	Voice Coil Former Material	VC_{fm}	-	TiSV
Rated Noise Power (IEC 2685 18.1)	Р	W	150	Voice Coil Inner Diameter	VC _d	mm	51.3
Test Spectrum Bandwidth 20 Hz - 2000Hz)Hz	12 dB/Oct	Maximum Linear Excursion	X_{max}	mm	9.05
				Transducer Mass	_	kg	2.24

Frequency and Impedance Response:

